

4TH INTERNATIONAL CONFERENCE ON BIG DATA for Official Statistics

8-10 NOVEMBER 2017 BOGOTA, COLOMBIA Trade & Transport Data Lake (a proof of concept)

Vision for Trade Data Lake

Data from new sources such as UPU (postal), ICAO (aviation), vessel tracking, etc, possibly in streams, to be included along with traditional trade statistics plus the underlying administrative data sources (such as customs declarations or shipping manifests) for better in-depth, timely and accurate analysis/forecast of international trade.

The comparative advantage over existing data would be timelier and richer analysis with possibilities of nowcasting and accurate short term forecasting

Problem statement

The introduction of new heterogeneous streams of data from various new sources demands

- elastic storage capacity that is flexible and more reliable
- real-time analytical capabilities (schema-on-read)
- convenience to do visualizations across these different data sources (structured/unstructured, processed/unprocessed)
- access to data anywhere/anytime through secure channel

Addressing the challenge

- Reliable elastic storage requirements can be met by moving to cloud-based solutions
- Real-time analytical capability can be realized with interactive query tools (big data analytics)
- Visualization across divergent datasets can possibly achieved through SaaS (Software as a service) tools

Features of big data analytics

 Possible to store and analyze huge volumes of structured/unstructured data that has Variety in nature and flowing in at high Velocity.

- When the existing <u>platforms/infrastructures</u> cannot withstand the three Vs, we move to <u>Cloud</u> based platforms such as AWS.
- When the <u>existing analytical solutions</u> cannot withstand the three Vs, we move to **Big data analytics** such as Hadoop.

Types of cloud architectures

laaS/PaaS

(Infrastructure as a service/Platform as a service)

The cloud vendor provides the service up to OS level (IaaS) or application level (PaaS) and we manage the rest.

- The required service is not available in the cloud (such as custom-applications built in house).
- bound to specific technologies/tools

Serverless (SaaS)

(Software as a service)

No servers, no maintenance and no licensing overheads. Desired functionalities are in the form of microservices (or nanoservices). No provisioning of underlying platforms such as OS, application, etc.

- The required service is readily available on the cloud such as data visualizations, api gateway, etc.
- Not bound to any tool/technology.

PUV

web services

Major cloud players

Inside the Trade Data Lake

5. Preview (138 records)

A

Period	*	Trade Flow	Reporter	-	Partner	$\frac{\mathbb{A}}{\mathbb{V}}$	Commodity Code	₩.	Trade Value (US\$)	Netweight (kg) 🛛 🔶
201704		Exports	Germany		World		8703		\$12,057,630,112	689,418,668
201704		Exports	EU-27		World		8703		\$10,818,144,502	649,749,551
201704		Exports	Japan		World		8703		\$7,475,467,110	0
201704		Exports	United States of America		World		8703		\$4,394,199,957	0
201704		Exports	Canada		World		2709		\$4,259,183,174	0
201704		Exports	Canada		World		8703		\$3,910,260,839	0
201704		Exports	United States of America		World		8542		\$3,054,710,168	0
201704		Exports	Belgium		World		8703		\$2,533,373,974	0
201704		Exports	Mexico		World		8703		\$2,463,394,570	0
201704		Exports	Spain		World		8703		\$2,429,991,993	245,535,871
201704		Exports	Norway		World		2709		\$2,290,600,635	5,893,181,599
201704		Exports	Japan		World		8542		\$2,152,854,334	0
201704		Exports	France		World		8703		\$1,641,021,817	152,902,922
201704		Exports	EU-27		World		8542		\$1,599,498,514	0
201704		Exports	United States of America		World		2709		\$1,583,402,519	0
201704		Exports	Czech Rep.		World		8703		\$1,576,017,590	144,951,920
201704		Exports	Slovakia		World		8703		\$1,345,464,953	118,881,116
201704		Exports	Mexico		World		2709		\$1,330,766,544	0
201704		Exports	Italy		World		<u>8703</u>		\$1,313,637,862	84,687,397

Big Data UN Global Working Group

Trade Data (National)

Courtesy: upu.int

CT_Address.CT_Location.code	String
CT_Address.CT_Location.name	String
CT_m307_supported_messages.T_Item.attributes_version_n	String
umber	
CT_m307_supported_messages.T_Item.customs_procedure	String
CT_m307_supported_messages.T_Item.dangerous_good_haz	String
ard_class	
CT_m307_supported_messages.T_Item.dangerous_good_typ	String
e_code	
CT_m307_supported_messages.T_Item.declared_gross_weig	String
ht	
CT_m307_supported_messages.T_ltem.measured_gross_wei	String
ght	
CT_m307_supported_messages.T_ltem.nature_of_transactio	String
n_code	

Postal Data (National)

Courtesy: upu.int

FIELD	DESCRIPTION	
TIMESTAMP	Time of ship position detection / reception (in UTC)	
MMSI	Ship's MMSI number sent with the AIS notification Statistics Netherlands (from E	ESS bigdata for official statistics)
Lat	Latitude of the ship position (in decimal degrees)	
Lon	Longitude of the ship position (in decimal degrees)	AIS Vessel
"Speed over		Tracking Data
ground"	Speed over ground (in knots)	
"Course over		
ground"	Course over ground (in degrees)	
Heading	True heading (in degrees (0-359))	
"IMO number"	Ship's IMO number sent with the AIS notification	
Shipname	Ship's vessel name sent with the AIS notification	
Callsign	Ship's Callsign sent with the AIS notification	
"Type of ship"	Ship type	
Draught	Maximum Present Static Draught (in meters)	
Destination	Destination	

In addition:

- Freight Aviation Data (ICAO)
- Shipping Manifests
- Advanced Export Declarations
- ASYCUDA records

Data Architecture based on AWS Cloud solutions

Data Lake is AWS's elastic storage layer to dump multi data sources

These data can be curated and stored at AWS data warehouse service (Redshift)

Or can be directly analyzed in analytical layer

Raw data at Data lake and Refined data from analytical layer can be distributed through API or be visualized

Working Group

data wareho

Quicksight

Next steps...

Establish continuous data feed to Data Lake Prep Data Lake for data analysis

Make it accessible publicly

THE UNITED NATIONS GLOBAL WORKING GROUP ON BIG DATA

Thanks!

Any questions ?

#UNBIGDATA2017

DANE INFORMACIÓN ESTRATÉGICA

GOBIERNO DE COLOMBIA

